AP Calculus AB – Unit 4 Outline – More Differentiation

Thursday 10/3	Today's Topic: Higher Order Derivatives
In-class examples:	Ex. 1 Find $f''(x)$ for $f(x) = x^{\frac{2}{3}}$
	Ex. 2 Find $\frac{d^2 y}{dx^2}$ for $y = x^2 + \frac{1}{x} - \sqrt{x}$
	Ex. 3 For $f(x) = 3x^3 - 4x^2 + 2x - 7$, find $f^{(IV)}(x)$.
	Ex. 4 For $f(x) = (x^2 - 5x)^3$, find $f''(x)$.
AP Multiple Choice If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{d}{dt}$	$\frac{y}{x} =$
(A) $5(1+x)^4$ (B)	B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$
Let f be the function given by $f(x) = (2x - 1)^5 (x + 1)$. Which of the following is an equation for the line tangent to the graph of f at the point where $x = 1$?	
(A) $y = 21x + 2$	
(B) $y = 21x - 19$	
(C) $y = 11x - 9$	
(D) $y = 10x + 2$	
(E) $y = 10x - 8$	
Homework: Worksheet	32

Friday 10/4	Today's Topic: Linearizat	ion (Linear Approximation) and Differentials;
In-class examples:	Ex. 1 Approximate $f(3.0)$	()301) for $f(x) = x^2 + x$ using a tangent line approximation.
	Ex. 2 Use a tangent line a	pproximation to estimate $f(9.246)$ for $f(x) = \sqrt{x}$.
	Ex. 3 Approximate using	linearization: $\sqrt[3]{10}$
AP Multiple Choice		
For the function f , $f'(x)$ tangent to the graph of f	f = 2x + 1 and $f(1) = 4$. W at $x = 1$?	hat is the approximation for $f(1.2)$ found by using the line
(A) 0.6 (B) 3.4	(C) 4.2 (D) 4.6	(E) 4.64
Homework: Worksheet	33	

Monday 10/7	Today's Topic: Derivatives of Sine and Cosine Functions
	$\frac{d}{dx}(\sin\Box) = \cos\Box \cdot \frac{d\Box}{dx} \text{ and } \frac{d}{dx}(\cos\Box) = -\sin\Box \cdot \frac{d\Box}{dx}$
In-Class Examples: Ex	1 Find $\frac{dy}{dx}$ for: a) $y = \sin 6x$ b) $y = \cos(x^2 + 2x - 1)$
Ex	2 Find $\frac{dy}{dx}$ for: a) $y = \frac{\cos x}{x^2}$ b) $y = x^2 \sin x$ d) $y = \sin^4 3x$
Ex	3 Find $\frac{d^2 y}{dx^2}$ for $y = \cos^2 x$
Ex	4 Find the equation of the tangent line to $f(x) = \cos x$ when $x = \frac{\pi}{4}$.
AP Multiple Choice	
$\lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\left(\frac{\pi}{3} + h\right)}{h}$	$\left(\frac{\pi}{3}\right)$ is
(A) 0 (B) $\frac{1}{2}$	(C) 1 (D) $\frac{\sqrt{3}}{2}$ (E) nonexistent
If $y = x \sin x$, then $\frac{dy}{dx} =$	
(A) $\sin x + \cos x$ (B)) $\sin x + x \cos x$ (C) $\sin x - x \cos x$ (D) $x(\sin x + \cos x)$ (E) $x(\sin x - \cos x)$
Homework: Worksheet 34	

Fuesday 10/8 Today's Topic: Derivatives of Trig Functions – We will be finding and proving the derivatives of the	
remaining trigonometric functions.	
$1 \cdot \frac{d(\tan \Box)}{dx} = \sec^2 \Box \bullet \frac{d\Box}{dx} 2 \cdot \frac{d(\cot \Box)}{dx} = -\csc^2 \Box \bullet \frac{d\Box}{dx} 3 \cdot \frac{d(\sec \Box)}{dx} = \sec \Box \bullet \tan \Box \bullet \frac{d\Box}{dx} 4 \cdot \frac{d(\csc \Box)}{dx} = -\csc \Box \bullet \cot \Box \bullet \frac{d\Box}{dx}$	
In-Class Examples: Find $\frac{dy}{dx}$.	
Ex. 1 a) $y = \tan(5x)$ b) $y = \frac{\tan x}{x}$ c) $y = \csc(x^2)$ d) $y = \cot^3(4x)$	
Ex. 2 Find the equation of the tangent line to the function $y = \sec(x)$ when $x = \frac{\pi}{4}$.	
AP Multiple Choice	
$\frac{d}{dx}\left(x^3\sec\left(2x\right)\right) =$	
(A) $6x^2 \sec(2x) \tan(2x)$	
(B) $2x^3 \tan^2(2x) + 3x^2 \sec(2x)$	
(C) $x^3 \sec(2x) \tan(2x) + 3x^2 \sec(2x)$	
(D) $2x^3 \sec(2x) \tan(2x) + 3x^2 \sec(2x)$	
$\frac{d}{dx}(\sin^3(x^2)) =$ (A) $\cos^3(x^2)$ (B) $3\sin^2(x^2)$ (C) $6x\sin^2(x^2)$	
(D) $3\sin^2(x^2)\cos(x^2)$ (E) $6x\sin^2(x^2)\cos(x^2)$	
If $y = \sin x \cos x$, then at $x = \frac{\pi}{3}$, $\frac{dy}{dx} =$	
(A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$ (E) 1	
Homework: Worksheet 35	

Thursday 10/10	Today's Topic: Quiz (Higher Order Derivatives, Linearization, Derivatives of ALL Trigs)
In-Class Examples: None	
AP Multiple Choce	
P	
The graph of $y = e^{\tan x} - 2$ at this point?	crosses the x-axis at one point in the interval $[0, 1]$. What is the slope of the graph
(A) 0.606 (B) 2	(C) 2.242 (D) 2.961 (E) 3.747
	(-1, 3) (-1, 3) (0, -3) y = g(x) (0, -3)
The figure above shows the gra the function given by $h(x) = e^{-1}$	ph of the function g and the line tangent to the graph of g at $x = -1$. Let h be $x \cdot g(x)$. What is the value of $h'(-1)$?
(A) $\frac{9}{e}$ (B) $\frac{-3}{e}$ ((C) $\frac{-6}{e}$ (D) $\frac{-6}{e} - \frac{3}{e^2}$ (E) -6
If $f(x) = 7x - 3 + \ln x$, the	en $f'(1) =$
(A) 4 (B) 5 (C) 6 (D) 7 (E) 8
Homework: None	

Friday 10/11	Today's Topic: L'Hopital's Rule
In-Class Examples: Ex. 1 $\lim_{x \to x}$	$\frac{2x^{2}-2}{x+1} \qquad \qquad$
Ex. 4 $\lim_{x \to x}$	$\lim_{x \to \infty} \frac{\ln x}{x} \qquad \qquad \text{Ex. 5 } \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} \qquad \qquad \text{Ex. 6 } \lim_{x \to -\infty} \frac{x}{e^{-x}}$
AP Multiple Choice	
$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4}$ is	
(A) $-\frac{1}{4}$ (B) 0	(C) 1 (D) $\frac{5}{4}$ (E) nonexistent
$\lim_{x \to 0} \frac{\sin x}{e^x - 1}$ is	
(A) 1 (B) $\frac{1}{e}$	(C) 0 (D) nonexistent
$\lim_{x \to 3} \frac{\tan(x-3)}{3e^{x-3}-x}$ is	
(A) 0 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) nonexistent
Homework: Worksheet 37	

Monday 10/14Today's Topic: Implicit DifferentiationWarm-Up: Find the second derivative of $f(x) = xe^x$ In-Class Examples: Ex. 1 Find $\frac{dy}{dx}$ for $x^2 + y^2 = 1$.Ex. 2 Find $\frac{dy}{dx}$ for $3x^2 + 5y = 2x$ Ex. 3 Find $\frac{dy}{dx}$ for $x^2 + xy - y^3 = 7$ Ex. 4 Find $\frac{dy}{dx}$ for $\sin(xy) = 2x + 5$ AP Multiple ChoiceIf $y^3 + y = x^2$, then $\frac{dy}{dx} =$ (A) 0(B) $\frac{x}{2}$ (C) $\frac{2x}{3y^2}$ (D) $2x - 3y^2$ (E) $\frac{2x}{1 + 3y^2}$ Homework: Worksheet 38

Tuesday 10/15	Today's Topic: Implicit Differentiation
In-Class Examples: Ex. 1 Find	d the tangent and normal to the graph of $x^2 - xy + y^2 = 7$ at the point $(-1, 2)$.
AP Multiple Choice	
If $(x+2y) \cdot \frac{dy}{dx} = 2x - y$, what	It is the value of $\frac{d^2y}{dx^2}$ at the point (3, 0)?
(A) $-\frac{10}{3}$ (B) 0	(C) 2 (D) $\frac{10}{3}$ (E) Undefined
If $e^{xy} - y^2 = e - 4$, then at	$x = \frac{1}{2}$ and $y = 2$, $\frac{dy}{dx} =$
(A) $\frac{e}{4}$ (B) $\frac{e}{2}$	(C) $\frac{4e}{8-e}$ (D) $\frac{4e}{4-e}$ (E) $\frac{8-4e}{e}$
Homework: Worksheet 39	

Friday 10/18	Today's Topic: Review	
Warm-Up: Find an equation of the tangent line to the curve of $f(x) = xe^x - e^x$ when $x = 1$.		
In-Class Examples: None		
_		
Homework: Worksheet 41		

Monday 10/21	Today's Topic: Review
In-Class Examples: None	
Homework: Worksheet 42	

Tuesday 10/22	Today's Topic: All Derivatives Exam!
In-Class Examples: None	
Homework: None.	